Emergency Generators Air Emissions Estimate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>0.0310</td>
<td>1.5500</td>
<td>1.5500</td>
<td>0.3875</td>
</tr>
<tr>
<td>CO</td>
<td>0.0067</td>
<td>0.3340</td>
<td>0.3340</td>
<td>0.0835</td>
</tr>
<tr>
<td>SOx</td>
<td>0.0021</td>
<td>0.1025</td>
<td>0.1025</td>
<td>0.0256</td>
</tr>
<tr>
<td>PM</td>
<td>0.0022</td>
<td>0.1100</td>
<td>0.1100</td>
<td>0.0275</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>0.0005</td>
<td>0.0232</td>
<td>0.0232</td>
<td>0.0058</td>
</tr>
<tr>
<td>TOC</td>
<td>0.0025</td>
<td>0.1235</td>
<td>0.1235</td>
<td>0.0309</td>
</tr>
<tr>
<td>Lead</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Combustion gases total emissions 0.561 ton/yr

Calculations

- **NOx**: \(EF \times \text{Capacity} \times \text{Quantity} \times \text{Operation} = 0.031 \times 50 \times 1 \times 500 / 2000 = 0.3875 \text{ ton/yr}
- **CO**: \(EF \times \text{Capacity} \times \text{Quantity} \times \text{Operation} = 0.00668 \times 50 \times 1 \times 500 / 2000 = 0.0835 \text{ ton/yr}
- **SOx**: \(EF \times \text{Capacity} \times \text{Quantity} \times \text{Operation} = 0.00205 \times 50 \times 1 \times 500 / 2000 = 0.025625 \text{ ton/yr}
- **PM**: \(EF \times \text{Capacity} \times \text{Quantity} \times \text{Operation} = 0.0022 \times 50 \times 1 \times 500 / 2000 = 0.0275 \text{ ton/yr}
- **Aldehydes**: \(EF \times \text{Capacity} \times \text{Quantity} \times \text{Operation} = 0.000463 \times 50 \times 1 \times 500 / 2000 = 0.005788 \text{ ton/yr}
- **TOC**: \(EF \times \text{Capacity} \times \text{Quantity} \times \text{Operation} = 0.00247 \times 50 \times 1 \times 500 / 2000 = 0.030875 \text{ ton/yr}
- **Lead**: \(EF \times \text{Capacity} \times \text{Quantity} \times \text{Operation} = 0 \times 50 \times 1 \times 500 / 2000 = 0 \text{ ton/yr}

Total: 0.561 ton/yr
Emergency Generators Air Emissions Estimate

Quantity 1
Capacity 536 hp
Operation 500 hr/yr
Sulfur % 0.5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>0.0310</td>
<td>16.6160</td>
<td>16.6160</td>
<td>4.1540</td>
</tr>
<tr>
<td>CO</td>
<td>0.0067</td>
<td>3.5805</td>
<td>3.5805</td>
<td>0.8951</td>
</tr>
<tr>
<td>SOx</td>
<td>0.0021</td>
<td>1.0988</td>
<td>1.0988</td>
<td>0.2747</td>
</tr>
<tr>
<td>PM</td>
<td>0.0022</td>
<td>1.1792</td>
<td>1.1792</td>
<td>0.2948</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>0.0005</td>
<td>0.2482</td>
<td>0.2482</td>
<td>0.0620</td>
</tr>
<tr>
<td>TOC</td>
<td>0.0025</td>
<td>1.3239</td>
<td>1.3239</td>
<td>0.3310</td>
</tr>
<tr>
<td>Lead</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Combustion gases total emissions 6.012 ton/yr

Calculations
NOx: EF * Capacity * Quantity * Operation = 0.031 * 536 * 1 * 500 / 2,000 = 4.154 ton/yr
CO: EF * Capacity * Quantity * Operation = 0.00668 * 536 * 1 * 500 / 2,000 = 0.89512 ton/yr
SOx: EF * Capacity * Quantity * Operation = 0.00205 * 536 * 1 * 500 / 2,000 = 0.2747 ton/yr
PM: EF * Capacity * Quantity * Operation = 0.0022 * 536 * 1 * 500 / 2,000 = 0.2948 ton/yr
Aldehydes: EF * Capacity * Quantity * Operation = 0.000463 * 536 * 1 * 500 / 2,000 = 0.062042 ton/yr
TOC: EF * Capacity * Quantity * Operation = 0.00247 * 536 * 1 * 500 / 2,000 = 0.33098 ton/yr
Lead: EF * Capacity * Quantity * Operation = 0 * 536 * 1 * 500 / 2,000 = 0 ton/yr
Total: 6.012 ton/yr
Aspenall Energies, LLC
Santa Isabel, Puerto Rico

Emergency Generators Air Emissions Estimate
Emissions Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Annual Emissions [ton/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>4.5415</td>
</tr>
<tr>
<td>CO</td>
<td>0.97862</td>
</tr>
<tr>
<td>SOx</td>
<td>0.300325</td>
</tr>
<tr>
<td>PM</td>
<td>0.3223</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>0.0678295</td>
</tr>
<tr>
<td>TOC</td>
<td>0.361855</td>
</tr>
<tr>
<td>Lead</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>6.5724295</td>
</tr>
</tbody>
</table>
APPENDIX A
AIR EMISSIONS FACTORS
3.3 Gasoline And Diesel Industrial Engines

3.3.1 General

The engine category addressed by this section covers a wide variety of industrial applications of both gasoline and diesel internal combustion (IC) engines such as aerial lifts, fork lifts, mobile refrigeration units, generators, pumps, industrial sweepers/scrubbers, material handling equipment (such as conveyors), and portable well-drilling equipment. The three primary fuels for reciprocating IC engines are gasoline, diesel fuel oil (No.2), and natural gas. Gasoline is used primarily for mobile and portable engines. Diesel fuel oil is the most versatile fuel and is used in IC engines of all sizes. The rated power of these engines covers a rather substantial range, up to 250 horsepower (hp) for gasoline engines and up to 600 hp for diesel engines. (Diesel engines greater than 600 hp are covered in Section 3.4, "Large Stationary Diesel And All Stationary Dual-fuel Engines"). Understandably, substantial differences in engine duty cycles exist. It was necessary, therefore, to make reasonable assumptions concerning usage in order to formulate some of the emission factors.

3.3.2 Process Description

All reciprocating IC engines operate by the same basic process. A combustible mixture is first compressed in a small volume between the head of a piston and its surrounding cylinder. The mixture is then ignited, and the resulting high-pressure products of combustion push the piston through the cylinder. This movement is converted from linear to rotary motion by a crankshaft. The piston returns, pushing out exhaust gases, and the cycle is repeated.

There are 2 methods used for stationary reciprocating IC engines: compression ignition (CI) and spark ignition (SI). This section deals with both types of reciprocating IC engines. All diesel-fueled engines are compression ignited, and all gasoline-fueled engines are spark ignited.

In CI engines, combustion air is first compression heated in the cylinder, and diesel fuel oil is then injected into the hot air. Ignition is spontaneous because the air temperature is above the autoignition temperature of the fuel. SI engines initiate combustion by the spark of an electrical discharge. Usually the fuel is mixed with the air in a carburetor (for gasoline) or at the intake valve (for natural gas), but occasionally the fuel is injected into the compressed air in the cylinder.

CI engines usually operate at a higher compression ratio (ratio of cylinder volume when the piston is at the bottom of its stroke to the volume when it is at the top) than SI engines because fuel is not present during compression; hence there is no danger of premature autoignition. Since engine thermal efficiency rises with increasing pressure ratio (and pressure ratio varies directly with compression ratio), CI engines are more efficient than SI engines. This increased efficiency is gained at the expense of poorer response to load changes and a heavier structure to withstand the higher pressures.1

3.3.3 Emissions

Most of the pollutants from IC engines are emitted through the exhaust. However, some total organic compounds (TOC) escape from the crankcase as a result of blowby (gases that are vented from the oil pan after they have escaped from the cylinder past the piston rings) and from the fuel tank and carburetor because of evaporation. Nearly all of the TOCs from diesel CI engines enter the
atmosphere from the exhaust. Evaporative losses are insignificant in diesel engines due to the low volatility of diesel fuels.

The primary pollutants from internal combustion engines are oxides of nitrogen (NO\textsubscript{x}), total organic compounds (TOC), carbon monoxide (CO), and particulates, which include both visible (smoke) and nonvisible emissions. Nitrogen oxide formation is directly related to high pressures and temperatures during the combustion process and to the nitrogen content, if any, of the fuel. The other pollutants, HC, CO, and smoke, are primarily the result of incomplete combustion. Ash and metallic additives in the fuel also contribute to the particulate content of the exhaust. Sulfur oxides (SO\textsubscript{x}) also appear in the exhaust from IC engines. The sulfur compounds, mainly sulfur dioxide (SO\textsubscript{2}), are directly related to the sulfur content of the fuel.2

3.3.3.1 Nitrogen Oxides -

Nitrogen oxide formation occurs by two fundamentally different mechanisms. The predominant mechanism with internal combustion engines is thermal NO\textsubscript{x} which arises from the thermal dissociation and subsequent reaction of nitrogen (N\textsubscript{2}) and oxygen (O\textsubscript{2}) molecules in the combustion air. Most thermal NO\textsubscript{x} is formed in the high-temperature region of the flame from dissociated molecular nitrogen in the combustion air. Some NO\textsubscript{x}, called prompt NO\textsubscript{x}, is formed in the early part of the flame from reaction of nitrogen intermediary species, and HC radicals in the flame. The second mechanism, fuel NO\textsubscript{x}, stems from the evolution and reaction of fuel-bound nitrogen compounds with oxygen. Gasoline, and most distillate oils have no chemically-bound fuel N\textsubscript{2} and essentially all NO\textsubscript{x} formed is thermal NO\textsubscript{x}.

3.3.3.2 Total Organic Compounds -

The pollutants commonly classified as hydrocarbons are composed of a wide variety of organic compounds and are discharged into the atmosphere when some of the fuel remains unburned or is only partially burned during the combustion process. Most unburned hydrocarbon emissions result from fuel droplets that were transported or injected into the quench layer during combustion. This is the region immediately adjacent to the combustion chamber surfaces, where heat transfer outward through the cylinder walls causes the mixture temperatures to be too low to support combustion.

Partially burned hydrocarbons can occur because of poor air and fuel homogeneity due to incomplete mixing, before or during combustion; incorrect air/fuel ratios in the cylinder during combustion due to maladjustment of the engine fuel system; excessively large fuel droplets (diesel engines); and low cylinder temperature due to excessive cooling (quenching) through the walls or early cooling of the gases by expansion of the combustion volume caused by piston motion before combustion is completed.2

3.3.3.3 Carbon Monoxide -

Carbon monoxide is a colorless, odorless, relatively inert gas formed as an intermediate combustion product that appears in the exhaust when the reaction of CO to CO\textsubscript{2} cannot proceed to completion. This situation occurs if there is a lack of available oxygen near the hydrocarbon (fuel) molecule during combustion, if the gas temperature is too low, or if the residence time in the cylinder is too short. The oxidation rate of CO is limited by reaction kinetics and, as a consequence, can be accelerated only to a certain extent by improvements in air and fuel mixing during the combustion process.2-3
3.3.3.4 Smoke and Particulate Matter -

White, blue, and black smoke may be emitted from IC engines. Liquid particulates appear as white smoke in the exhaust during an engine cold start, idling, or low load operation. These are formed in the quench layer adjacent to the cylinder walls, where the temperature is not high enough to ignite the fuel. Blue smoke is emitted when lubricating oil leaks, often past worn piston rings, into the combustion chamber and is partially burned. Proper maintenance is the most effective method of preventing blue smoke emissions from all types of IC engines. The primary constituent of black smoke is agglomerated carbon particles (soot) formed in regions of the combustion mixtures that are oxygen deficient.2

3.3.3.5 Sulfur Oxides -

Sulfur oxides emissions are a function of only the sulfur content in the fuel rather than any combustion variables. In fact, during the combustion process, essentially all the sulfur in the fuel is oxidized to SO2. The oxidation of SO2 gives sulfur trioxide (SO3), which reacts with water to give sulfuric acid (H2SO4), a contributor to acid precipitation. Sulfuric acid reacts with basic substances to give sulfates, which are fine particulates that contribute to PM-10 and visibility reduction. Sulfur oxide emissions also contribute to corrosion of the engine parts.2-3

3.3.4 Control Technologies

Control measures to date are primarily directed at limiting NOx and CO emissions since they are the primary pollutants from these engines. From a NOx control viewpoint, the most important distinction between different engine models and types of reciprocating engines is whether they are rich-burn or lean-burn. Rich-burn engines have an air-to-fuel ratio operating range that is near stoichiometric or fuel-rich of stoichiometric and as a result the exhaust gas has little or no excess oxygen. A lean-burn engine has an air-to-fuel operating range that is fuel-lean of stoichiometric; therefore, the exhaust from these engines is characterized by medium to high levels of O2. The most common NOx control technique for diesel and dual-fuel engines focuses on modifying the combustion process. However, selective catalytic reduction (SCR) and nonselective catalytic reduction (NSCR) which are post-combustion techniques are becoming available. Controls for CO have been partly adapted from mobile sources.4

Combustion modifications include injection timing retard (ITR), preignition chamber combustion (PCC), air-to-fuel ratio adjustments, and derating. Injection of fuel into the cylinder of a CI engine initiates the combustion process. Retarding the timing of the diesel fuel injection causes the combustion process to occur later in the power stroke when the piston is in the downward motion and combustion chamber volume is increasing. By increasing the volume, the combustion temperature and pressure are lowered, thereby lowering NOx formation. ITR reduces NOx from all diesel engines; however, the effectiveness is specific to each engine model. The amount of NOx reduction with ITR diminishes with increasing levels of retard.4

Improved swirl patterns promote thorough air and fuel mixing and may include a precombustion chamber (PCC). A PCC is an antechamber that ignites a fuel-rich mixture that propagates to the main combustion chamber. The high exit velocity from the PCC results in improved mixing and complete combustion of the lean air/fuel mixture which lowers combustion temperature, thereby reducing NOx emissions.4
The air-to-fuel ratio for each cylinder can be adjusted by controlling the amount of fuel that enters each cylinder. At air-to-fuel ratios less than stoichiometric (fuel-rich), combustion occurs under conditions of insufficient oxygen which causes NO\textsubscript{x} to decrease because of lower oxygen and lower temperatures. Derating involves restricting the engine operation to lower than normal levels of power production for the given application. Derating reduces cylinder pressures and temperatures, thereby lowering NO\textsubscript{x} formation rates.4

SCR is an add-on NO\textsubscript{x} control placed in the exhaust stream following the engine and involves injecting ammonia (NH\textsubscript{3}) into the flue gas. The NH\textsubscript{3} reacts with NO\textsubscript{x} in the presence of a catalyst to form water and nitrogen. The effectiveness of SCR depends on fuel quality and engine duty cycle (load fluctuations). Contaminants in the fuel may poison or mask the catalyst surface causing a reduction or termination in catalyst activity. Load fluctuations can cause variations in exhaust temperature and NO\textsubscript{x} concentration which can create problems with the effectiveness of the SCR system.4

NSCR is often referred to as a three-way conversion catalyst system because the catalyst reactor simultaneously reduces NO\textsubscript{x}, CO, and HC and involves placing a catalyst in the exhaust stream of the engine. The reaction requires that the O\textsubscript{2} levels be kept low and that the engine be operated at fuel-rich air-to-fuel ratios.4

The most accurate method for calculating such emissions is on the basis of "brake-specific" emission factors (pounds per horsepower-hour [lb/hp-hr]). Emissions are the product of the brake-specific emission factor, the usage in hours, the rated power available, and the load factor (the power actually used divided by the power available). However, for emission inventory purposes, it is often easier to assess this activity on the basis of fuel used.

Once reasonable usage and duty cycles for this category were ascertained, emission values were aggregated to arrive at the factors for criteria and organic pollutants presented. Factors in Table 3.3-1 are in pounds per million British thermal unit (lb/MMBtu). Emission data for a specific design type were weighted according to estimated material share for industrial engines. The emission factors in these tables, because of their aggregate nature, are most appropriately applied to a population of industrial engines rather than to an individual power plant. Table 3.3-2 shows unweighted speciated organic compound and air toxic emission factors based upon only 2 engines. Their inclusion in this section is intended for rough order-of-magnitude estimates only.

Table 3.3-3 summarizes whether the various diesel emission reduction technologies (some of which may be applicable to gasoline engines) will generally increase or decrease the selected parameter. These technologies are categorized into fuel modifications, engine modifications, and exhaust after-treatments. Current data are insufficient to quantify the results of the modifications. Table 3.3-3 provides general information on the trends of changes on selected parameters.
3.3.5 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are summarized below. For further detail, consult the memoranda describing each supplement or the background report for this section.

Supplement A, February 1996

No changes.

Supplement B, October 1996

- Text was revised concerning emissions and controls.
- The CO₂ emission factor was adjusted to reflect 98.5 percent conversion efficiency.
Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)</th>
<th>Diesel Fuel (SCC 2-02-001-02, 2-03-001-01)</th>
<th>EMISSION FACTOR RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}</td>
<td>0.011 (lb/hp-hr)</td>
<td>1.63 (lb/MMBtu)</td>
<td>0.031 (lb/hp-hr)</td>
</tr>
<tr>
<td>CO</td>
<td>6.96 E-03d</td>
<td>0.99d</td>
<td>6.68 E-03</td>
</tr>
<tr>
<td>SO\textsubscript{x}</td>
<td>5.91 E-04</td>
<td>0.084</td>
<td>2.05 E-03</td>
</tr>
<tr>
<td>PM-10b</td>
<td>7.21 E-04</td>
<td>0.10</td>
<td>2.20 E-03</td>
</tr>
<tr>
<td>CO\textsubscript{2}c</td>
<td>1.08</td>
<td>154</td>
<td>1.15</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>4.85 E-04</td>
<td>0.07</td>
<td>4.63 E-04</td>
</tr>
<tr>
<td>TOC</td>
<td>Exhaust</td>
<td>0.015</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>Evaporative</td>
<td>6.61 E-04</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Crankcase</td>
<td>4.85 E-03</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>Refueling</td>
<td>1.08 E-03</td>
<td>0.15</td>
</tr>
</tbody>
</table>

a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

b PM-10 = particulate matter less than or equal to 10 \textmu m aerodynamic diameter. All particulate is assumed to be \leq 1 \textmu m in size.

c Assumes 99% conversion of carbon in fuel to CO, with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.

d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009
Table 3.3-2. SPECIATED ORGANIC COMPOUND EMISSION FACTORS FOR UNCONTROLLED DIESEL ENGINES

EMISSION FACTOR RATING: E

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (Fuel Input) (lb/MMBtu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene<sup>b</sup></td>
<td>9.33 E-04</td>
</tr>
<tr>
<td>Toluene<sup>b</sup></td>
<td>4.09 E-04</td>
</tr>
<tr>
<td>Xylenes<sup>b</sup></td>
<td>2.85 E-04</td>
</tr>
<tr>
<td>Propylene</td>
<td>2.58 E-03</td>
</tr>
<tr>
<td>1,3-Butadiene<sup>b,c</sup></td>
<td><3.91 E-05</td>
</tr>
<tr>
<td>Formaldehyde<sup>b</sup></td>
<td>1.18 E-03</td>
</tr>
<tr>
<td>Acetaldehyde<sup>b</sup></td>
<td>7.67 E-04</td>
</tr>
<tr>
<td>Acrolein<sup>b</sup></td>
<td><9.25 E-05</td>
</tr>
<tr>
<td>Polycyclic aromatic hydrocarbons (PAH)</td>
<td></td>
</tr>
<tr>
<td>Naphthalene<sup>b</sup></td>
<td>8.48 E-05</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td><5.06 E-06</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td><1.42 E-06</td>
</tr>
<tr>
<td>Fluorene</td>
<td>2.92 E-05</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>2.94 E-05</td>
</tr>
<tr>
<td>Anthracene</td>
<td>1.87 E-06</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>7.61 E-06</td>
</tr>
<tr>
<td>Pyrene</td>
<td>4.78 E-06</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>1.68 E-06</td>
</tr>
<tr>
<td>Chrysene</td>
<td>3.53 E-07</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td><9.91 E-08</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td><1.55 E-07</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td><1.88 E-07</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td><3.75 E-07</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td><5.83 E-07</td>
</tr>
<tr>
<td>Benzo(g,h,l)perylenne</td>
<td><4.89 E-07</td>
</tr>
<tr>
<td>TOTAL PAH</td>
<td>1.68 E-04</td>
</tr>
</tbody>
</table>

^a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
^b Hazardous air pollutant listed in the *Clean Air Act*.
^c Based on data from 1 engine.
Table 3.3-3. EFFECT OF VARIOUS EMISSION CONTROL TECHNOLOGIES ON DIESEL ENGINES

<table>
<thead>
<tr>
<th>Technology</th>
<th>Affected Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase</td>
</tr>
<tr>
<td>Fuel modifications</td>
<td>PM, wear</td>
</tr>
<tr>
<td>Sulfur content increase</td>
<td>PM, NO_x</td>
</tr>
<tr>
<td>Aromatic content increase</td>
<td>PM, NO_x</td>
</tr>
<tr>
<td>Cetane number</td>
<td>PM, NO_x</td>
</tr>
<tr>
<td>10% and 90% boiling point</td>
<td>PM, NO_x</td>
</tr>
<tr>
<td>Fuel additives</td>
<td>PM, NO_x</td>
</tr>
<tr>
<td>Water/Fuel emulsions</td>
<td>PM, NO_x</td>
</tr>
<tr>
<td>Engine modifications</td>
<td>PM, BSFC</td>
</tr>
<tr>
<td>Injection timing retard</td>
<td>PM, NO_x</td>
</tr>
<tr>
<td>Fuel injection pressure</td>
<td>PM, NO_x</td>
</tr>
<tr>
<td>Injection rate control</td>
<td>PM, NO_x</td>
</tr>
<tr>
<td>Rapid spill nozzles</td>
<td>PM</td>
</tr>
<tr>
<td>Electronic timing & metering</td>
<td>NO_x, PM</td>
</tr>
<tr>
<td>Injector nozzle geometry</td>
<td>PM</td>
</tr>
<tr>
<td>Combustion chamber modifications</td>
<td>NO_x, PM</td>
</tr>
<tr>
<td>Turbocharging</td>
<td>PM, power</td>
</tr>
<tr>
<td>Charge cooling</td>
<td>NO_x</td>
</tr>
<tr>
<td>Exhaust gas recirculation</td>
<td>PM, power, wear</td>
</tr>
<tr>
<td>Oil consumption control</td>
<td>PM, wear</td>
</tr>
<tr>
<td>Exhaust after-treatment</td>
<td>PM</td>
</tr>
<tr>
<td>Particulate traps</td>
<td>PM</td>
</tr>
<tr>
<td>Selective catalytic reduction</td>
<td>NO_x</td>
</tr>
<tr>
<td>Oxidation catalysts</td>
<td>TOC, CO, PM</td>
</tr>
</tbody>
</table>

* Reference 8. PM = particulate matter. BSFC = brake-specific fuel consumption.
References For Section 3.3

